首页> 外文OA文献 >Surface residues dynamically organize water bridges to enhance electron transfer between proteins
【2h】

Surface residues dynamically organize water bridges to enhance electron transfer between proteins

机译:表面残留物动态组织水桥以增强蛋白质之间的电子转移

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cellular energy production depends on electron transfer (ET) between proteins. In this theoretical study, we investigate the impact of structural and conformational variations on the electronic coupling between the redox proteins methylamine dehydrogenase and amicyanin from Paracoccus denitrificans. We used molecular dynamics simulations to generate configurations over a duration of 40 ns (sampled at 100-fs intervals) in conjunction with an ET pathway analysis to estimate the ET coupling strength of each configuration. In the wild-type complex, we find that the most frequently occurring molecular configurations afford superior electronic coupling due to the consistent presence of a water molecule hydrogen-bonded between the donor and acceptor sites. We attribute the persistence of this water bridge to a “molecular breakwater” composed of several hydrophobic residues surrounding the acceptor site. The breakwater supports the function of nearby solvent-organizing residues by limiting the exchange of water molecules between the sterically constrained ET region and the more turbulent surrounding bulk. When the breakwater is affected by a mutation, bulk solvent molecules disrupt the water bridge, resulting in reduced electronic coupling that is consistent with recent experimental findings. Our analysis suggests that, in addition to enabling the association and docking of the proteins, surface residues stabilize and control interprotein solvent dynamics in a concerted way.
机译:细胞产生的能量取决于蛋白质之间的电子转移(ET)。在这一理论研究中,我们研究了结构和构象变化对氧化还原蛋白甲胺脱氢酶与反硝化副球菌花青素之间电子耦合的影响。我们使用分子动力学模拟在40ns的持续时间内生成构型(以100-fs的间隔采样),并结合ET途径分析来评估每种构型的ET耦合强度。在野生型复合物中,我们发现,由于在供体和受体位点之间始终存在氢键结合的水分子,因此最常见的分子构型提供了优异的电子偶联。我们将此水桥的持久性归因于“分子防波堤”,其由受体位点周围的几个疏水性残基组成。防波堤通过限制水分子在空间受限的ET区与周围湍流更大的主体之间的交换来支持附近的溶剂组织残基的功能。当防波堤受突变影响时,大量溶剂分子会破坏水桥,导致电子偶联减少,这与最近的实验结果一致。我们的分析表明,除了使蛋白质缔合和对接之外,表面残基还以协调的方式稳定并控制蛋白质间溶剂的动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号